Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 249(4): 1143-1155, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603793

RESUMO

MAIN CONCLUSION: Growth in hot climates selectively alters potato tuber secondary metabolism-such as the anthocyanins, carotenoids, and glycoalkaloids-changing its nutritive value and the composition of health-promoting components. Potato breeding for improved nutritional value focuses mainly on increasing the health-promoting carotenoids and anthocyanins, and controlling toxic steroidal glycoalkaloids (SGAs). Metabolite levels are genetically determined, but developmental, tissue-specific, and environmental cues affect their final content. Transcriptomic and metabolomic approaches were applied to monitor carotenoid, anthocyanin, and SGA metabolite levels and their biosynthetic genes' expression under heat stress. The studied cultivars differed in tuber flesh carotenoid concentration and peel anthocyanin concentration. Gene expression studies showed heat-induced downregulation of specific genes for SGA, anthocyanin, and carotenoid biosynthesis. KEGG database mapping of the heat transcriptome indicated reduced gene expression for specific metabolic pathways rather than a global heat response. Targeted metabolomics indicated reduced SGA concentration, but anthocyanin pigments concentration remained unchanged, probably due to their stabilization in the vacuole. Total carotenoid level did not change significantly in potato tuber flesh, but their composition did. Results suggest that growth in hot climates selectively alters tuber secondary metabolism, changing its nutritive value and composition of health-promoting components.


Assuntos
Alcaloides/análise , Antocianinas/análise , Carotenoides/análise , Valor Nutritivo , Solanum tuberosum/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Metabolômica , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/metabolismo
2.
Planta ; 246(6): 1189-1202, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828630

RESUMO

MAIN CONCLUSION: Phytosterol homeostasis may be maintained in leaves through diversion of intermediates into glycoalkaloid biosynthesis, whereas in tuber flesh, excess intermediates are catalyzed by tuber-specific StLAS - like , resulting in low tuber glycoalkaloids. Lanosterol synthase (LAS) and cycloartenol synthase (CAS) are phylogenetically related enzymes. Cycloartenol is the accepted precursor leading to cholesterol and phytosterols, and in potato, to steroidal glycoalkaloid (SGA) biosynthesis. LAS was also shown to synthesize some plant sterols, albeit at trace amounts, questioning its role in sterol homeostasis. Presently, a potato LAS-related gene (StLAS-like) was identified and its activity verified in a yeast complementation assay. A transgenic approach with targeted gene expression and metabolic profiling of sterols and SGAs was used. Analyses of StLAS-like transcript levels and StLAS-like-promoter::GUS reporter assays indicated specific expression in tuber flesh tissue. Overexpression of Arabidopsis AtLAS in leaves where the endogenic StLAS-like is not expressed, resulted with increased SGA level and reduced phytosterol level, while in the tuber flesh SGA level was reduced. StLAS-like expression only in tuber flesh may explain the differential accumulation of SGAs in commercial cultivars-low in tubers, high in leaves. In leaves, to maintain phytosterol homeostasis, an excess of intermediates may be diverted into SGA biosynthesis, whereas in tuber flesh these intermediates are catalyzed by tuber-specific StLAS-like instead, resulting in low levels of SGA.


Assuntos
Arabidopsis/enzimologia , Transferases Intramoleculares/metabolismo , Fitosteróis/metabolismo , Solanina/metabolismo , Solanum tuberosum/enzimologia , Triterpenos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas , Genes Reporter , Transferases Intramoleculares/genética , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Solanum tuberosum/genética
3.
Plant Mol Biol ; 94(4-5): 481-494, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28536883

RESUMO

KEY MESSAGE: Newly identified genes that are preferentially expressed in potato skin include genes that are associated with the secondary cell wall and stress-related activities and contribute to the skin's protective function. Microarrays were used to compare the skin and tuber-flesh transcriptomes of potato, to identify genes that contribute to the unique characteristics of the skin as a protective tissue. Functional gene analysis indicated that genes involved in developmental processes such as cell division, cell differentiation, morphogenesis and secondary cell wall formation (lignification and suberization), and stress-related activities, are more highly expressed in the skin than in the tuber flesh. Several genes that were differentially expressed in the skin (as verified by qPCR) and had not been previously identified in potato were selected for further analysis. These included the StKCS20-like, StFAR3, StCYP86A22 and StPOD72-like genes, whose sequences suggest that they may be closely related to known suberin-related genes; the StHAP3 transcription factor that directs meristem-specific expression; and the StCASP1B2-like and StCASP1-like genes, which are two orthologs of a protein family that mediates the formation of Casparian strips in the suberized endodermis of Arabidopsis roots. An examination of microtubers induced from transgenic plants carrying GUS reporter constructs of these genes indicated that these genes were expressed in the skin, with little to no expression in the tuber flesh. Some of the reporter constructs were preferentially expressed in the inner layers of the skin, the root endodermis, the vascular cambium and the epidermis of the stem. Cis-regulatory elements within the respective promoter sequences support this gene-expression pattern.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...